Journal of Hazardous Materials 340 (2017) 272-280

Contents lists available at ScienceDirect

Journal of Hazardous Materials

Polyamines may influence phytochelatin synthesis during Cd stress in rice

Magda Pál^{a,*}, Gabriella Csávás^b, Gabriella Szalai^a, Tímea Oláh^a, Radwan Khalil^c, Rusina Yordanova^d, Gyöngyvér Gell^a, Zsófia Birinyi^a, Edit Németh^a, Tibor Janda^a

- ^a Agricultural Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, H-2462 Martonvásár, POB 19, Hungary
- b Faculty of Horticultural Science, Szent István University, H-1118 Budapest, Hungary
- c Botany Department, Faculty of Science, Benha University, Benha, Egypt
- d Institute of Plant Physiology and Genetics, Bulgarian Academy of Science, Bulgaria

HIGHLIGHTS

- · Putrescine pre-treatment increased cadmium toxicity in rice.
- In contrast, putrescine synthesis inhibition alleviated cadmium stress.
- The synthesis of higher polyamines and phytochelatins is antagonistically related.
- Putrescine may decrease phytochelatin synthesis at enzymatic and gene expression levels.